9. V. P. Kozlov, V. N. Lipovtsev, and G. P. Pisarik, Industrial Thermal Engineering [in Russian], 9, No. 2, 96-102 (1987).
10. V. P. Kozlov, G. M. Volokhov, and V. N. Lipovtsev, Inzh.-Fiz. Zh., 54, No. 5, 828-835 (1988).
11. J. V. Beck, Heat Mass Transf., 24, No. 1, 155-164 (1981).
12. A. V. Lykov, Theory of Heat Conduction [in Russian], Moscow (1967).

TEMPERATURE FIELD IN A HALFSPACE WITH A PARALLELEPIPED-

SHAPED HEAT-RELEASING INCLUSION
Yu. M. Kolyano, Yu. M. Kríchevets,
UDC 536.24
E. G. Ivanik, and V. I. Gavrysh

A study is made of the stationary temperature field in a half-space containing
a foreign heat-releasing inclusion of parallelepiped shape of small dimensions.

In the operation of metalioceramic bodies of radio-electronic apparatus a need a:ises for studying temperature fields for bodies with foreign inclusions of small dimensions.

In this connection we consider an isotropic halfspace containing, at a distance :: from its boundary surface, a foreign inclusion of parallelepiped shape and volume $V_{0}=8 \mathrm{hbd}$ in whose vicinity uniformly distributed internal heat sources of strength q_{0} are operative. We refer the body in question to a rectangular cartesian coordinate system. We place the coordinate origin at the center of the inclusion. On the boundary surface $z=-d-x$ a convective heat exchange is specified with external mean temperature t_{c}.

For the determination of the stationary temperature field we have the heat conduction equation [1]

$$
\begin{gather*}
\frac{\partial}{\partial x}\left[\lambda(x, y, z) \frac{\partial \Theta}{\partial x}\right]+\frac{\partial}{\partial y}\left[\lambda(x, y, z) \frac{\partial \Theta}{\partial y}\right]+ \tag{1}\\
+\frac{\partial}{\partial z}\left[\lambda(x, y, z) \frac{\partial \Theta}{\partial z}\right]=-Q(x, y, z)
\end{gather*}
$$

where

$$
\begin{gather*}
\lambda(x, y, z)=\lambda_{1}+\left(\lambda_{\theta}-\lambda_{1}\right) N(x, h) N(y, b) N(z, d) ; \\
Q(x, y, z)=q_{0} N(x, h) N(y, b) N(z, d) ; \tag{2}\\
\Theta=t-t_{c} ; N(x, h)=S(x+h)-S(x-h) .
\end{gather*}
$$

The boundary conditions may be written in the form

$$
\begin{align*}
& \lambda_{1} \frac{\partial \Theta}{\partial z}=\alpha_{2} \Theta \text { for } z=-d-l, \Theta=0 \text { for } z \rightarrow \infty, \tag{3}\\
& \Theta=0, \frac{\partial \Theta}{\partial x}=0 \text { for }|x| \rightarrow \infty, \Theta=0, \frac{\partial \Theta}{\partial y}=0 \text { for }|y| \rightarrow \infty .
\end{align*}
$$

We assume that the dimensions of the foreign inclusion are small in comparison wich the distance from the coupling boundary to the boundary surface. We introduce the adduced thermal conductivity $\Lambda_{0}=\lambda_{0} V_{0}$ of the inclusion, the adduced power $Q_{0}=q_{0} V_{0}$ of the heat sources acting in it, and in Eqs. (2) we pass to the limit, letting $h \rightarrow 0, b \rightarrow 0, d \rightarrow 0$,

[^0]maintaining Λ_{0} and Q_{0} constant, and using the well-known [2] limit $\lim _{h \rightarrow 0} \frac{N(x, h)}{2 h}=\delta(x)$. As a result we have
\[

$$
\begin{gather*}
\lambda(x, y, z)=\lambda_{1}+\Lambda_{0} \delta(x, y, z), \tag{4}\\
Q(x, y, z)=Q_{0} \delta(x, y, z) . \tag{5}
\end{gather*}
$$
\]

Although the local non-homogeneity described by the relation (4) containing the Dirac delta-function is formally concentrated at the origin, it is, in fact, characterized by finite dimensions associated with the volume V_{0}. Thus the finite dimensions of the inclusion are effectively accounted for by relation (4) (see [3]).

Substituting expressions (4) and (5) into Eq. (1), we obtain the eqaution

$$
\begin{gather*}
\Delta \Theta+\frac{\Lambda_{0}}{\lambda_{1}}\left[\left.\frac{\partial \Theta(x, 0,0)}{\partial x}\right|_{x=0} ^{*} \delta^{\prime}(x) \delta(y, z)+\left.\frac{\partial \Theta(0, y, 0)}{\partial y}\right|_{y=0} ^{* r} \delta^{\prime}(y) \delta(x, z)+\right. \\
\left.+\left.\frac{\partial \Theta(0,0, z)}{\partial z}\right|_{z=0} ^{*} \delta^{\prime}(z) \delta(x, y)\right]=-\frac{Q_{0}}{\lambda_{1}} \delta(x, y, z), \tag{6}
\end{gather*}
$$

where

$$
\left.\frac{\partial \Theta(x, 0,0)}{\partial x}\right|_{x=0} ^{*}=\frac{1}{2}\left[\left.\frac{\partial \Theta(x, 0,0)}{\partial x}\right|_{x=+0}+\left.\frac{\partial \Theta(x, 0,0)}{\partial x}\right|_{x=-0}\right] .
$$

Applying the Fourier integral transform with respect to coordinates x and y to equation (6) and conditions (2), we arrive at the following boundary value problem:

$$
\begin{gather*}
\frac{d^{2} \bar{\Theta}}{d z^{2}}-\gamma^{2} \bar{\Theta}=-P_{1} \delta(z)-P_{2} \delta^{\prime}(z), \tag{7}\\
\lambda_{1} \frac{d \bar{\Theta}}{d z}=\alpha_{z} \bar{\Theta} \text { for } z=-d-l, \bar{\Theta}=0 \text { for } z \rightarrow \infty, \tag{8}
\end{gather*}
$$

where

$$
\begin{gathered}
\bar{\Theta}=\frac{1}{2 \pi} \int_{-\infty}^{\infty} \exp i \alpha x d x \int_{-\infty}^{\infty} \Theta \exp i \beta y d y ; \gamma^{2}=\alpha^{2}+\rho^{2} ; \\
P_{1}=\frac{Q_{0}}{2 \pi \lambda_{1}} ; P_{2}=\left.\frac{\Lambda_{0}}{2 \pi \lambda_{1}} \frac{\partial \Theta(0,0, z)}{\partial z}\right|_{z=0} ^{*} .
\end{gathered}
$$

Here we have taken into account that $\left.\frac{\partial \Theta(x, 0,0)}{\partial x}\right|_{x=0} ^{*}=\left.\frac{\partial \Theta(0, y, 0)}{\partial y}\right|_{y=0} ^{*}=0$.
The solution of Eq. (7), subject to conditions (8), has the form

$$
\begin{equation*}
\bar{\Theta}=\frac{1}{2}\left\{\frac{P_{1}}{\gamma}\left[F_{1}(z)-F_{2}\left(z+d_{1}\right)\right]-P_{2}\left[F_{1}(z) \operatorname{sign} z+F_{2}\left(z+d_{1}\right)\right]\right\} \tag{9}
\end{equation*}
$$

where

$$
F_{1}(z)=\exp (-\gamma|z|) ; F_{2}(z)=\frac{\alpha_{z}-\lambda_{1} \gamma}{\alpha_{z}+\lambda_{1} \gamma} \exp (-\gamma z) ; d_{1}=2(d+l) .
$$

Performing the inverse transform on Eq. (9) and using the reference data from [4, 5], we arrive at an expression for the dimensionless temperature

$$
\begin{align*}
T= & \frac{\lambda_{1} l}{Q_{0}} \Theta=\frac{1}{4 \pi}\left[\varphi^{-\frac{1}{2}}(X, Y, Z)+\varphi^{-\frac{1}{2}}(X, Y, Z+D)-\right. \\
& -B i \psi(X, Y, Z+D)]+\frac{1}{2} P_{2}\left[Z \varphi^{-\frac{3}{2}}(X, Y, Z)-\right. \tag{10}\\
& \left.-(Z+D) \varphi^{-\frac{3}{2}}(X, Y, Z+D)+B i \psi_{1}(X, Y, Z+D)\right],
\end{align*}
$$

where

$$
X=\frac{x}{l} ; Y=\frac{y}{l} ; Z=\frac{z}{l} ; D=\frac{d_{1}}{l} ; \varphi(X, Y, Z)=X^{2}+Y^{2}+Z^{2} ;
$$

Fig. 1. Dependence of dimensionless temperature T on: (a) dimensionless coordinate X for $\mathrm{Bi}=1, \mathrm{Z}=0.02$; (b) dimensionless coordinate Z for $B i=1, X=0.02$; (c) dimensionless coordinate Z for $X=0.02$.

$$
\begin{aligned}
& \psi(X, Y, Z)=2 \operatorname{expBi} Z \int_{Z}^{\infty} \exp (-\mathrm{Bi} Z) \varphi^{-\frac{1}{2}}(X, Y, Z) d Z ; \\
& \psi_{1}(X, Y, Z)=2 \exp B i Z \int_{Z}^{\infty} Z \exp (-\operatorname{Bi} Z) \varphi \varphi^{-\frac{3}{2}}(X, Y, Z) d Z ; \\
& \left.\frac{\partial \Theta(0,0, z)}{\partial z}\right|_{z=0} ^{*}=\left\{\frac{1}{d^{2}}+\frac{1}{4(d+l)^{2}}+\frac{B i}{l}\left[\frac{\mathrm{Bi}}{l} \psi(0,0, D)-\right.\right. \\
& \left.\left.-\frac{1}{l+d}\right]\right\} /\left\{l \left[4 \pi+\frac{\Lambda_{0}}{\lambda_{1}}\left(\frac{1}{4(l+d)^{3}}-\frac{\mathrm{Bi}}{2 l(d+l)^{2}}+\right.\right.\right. \\
& \left.\left.\left.+\frac{\mathrm{Bi}^{2}}{l^{3}}\right) \psi_{1}(0,0, D)\right]\right\} \text {. }
\end{aligned}
$$

For Bi $=0$ expression (10) has the form

$$
\begin{gather*}
T=\frac{1}{4 \pi}\left[\varphi^{-\frac{1}{2}}(X, Y, Z)\left(1+\frac{1}{2} P_{2} Z \varphi^{-1}(X, Y, Z)\right)+\right. \\
\left.+\varphi^{-\frac{1}{2}}(X, Y, Z+D)\left(1-\frac{1}{2} P_{2}(Z+D) \varphi^{-1}(X, Y, Z+D)\right)\right] \tag{11}
\end{gather*}
$$

Here $\left.\frac{\partial \Theta(0,0, z)}{\partial z}\right|_{z=0} ^{*}=\left(\frac{1}{d^{2}}-\frac{1}{4(d+l)^{2}}\right) /\left[l\left(4 \pi+\frac{\Lambda_{0}}{4 \lambda_{1}(d+l)^{3}}\right)\right]$.
Using formulas (10) and (11) with $\mathrm{Y}=0$, calculations were made and a study was conducted of the dimensionless temperature distribution T for the following initial data:

TABLE 1. Dependence of Dimensionless Temperature T on Dimensionless Coordinate Z for $X=0.02$

$-z \cdot 10^{z}$	Bi				$-z \cdot 10^{2}$	Bi		
	0	1	5		0	1	5	
22	0,6502	0,5924	0,5769	10	1,9731	1,9177	1,9038	
18	0,8498	0,7928	0,7781	6	4,2007	4,1460	4,1324	
14	1,2075	1,1514	1,1371	2	13,6778	13,6231	13,6094	

basic material, ceramic BK94-1; inclusion material, molybdenum; $h / \ell=b / \ell=d / \ell=0.02$. Numerical results illustrating the variation of the dimensionless temperature along coordinate X for $Z=0.02$ and along coordinate Z for $X=0.02$ are shown in Fig. 1 ; values of the dimensionless temperature for $-22 \leq z \cdot 10^{2} \leq-2$ and $\mathrm{Bi}=0 ; 1 ; 5$ are given in Table 1 .

It is evident from Figs. la and 1 b that the temperature increases monotonically with decrease in the values of X and $|Z|$ and attains its largest value in the region of operation of the heat sources (curve 1 in the case of a foreign inclusion in the halfspace; curve 2 in the case of a homogeneous halfspace). It is seen that presence of a foreign heat-releasing inclusion leads to a significant increase in the temperature. In the region $|z| \leq 0.12$ a symmetry may be observed in the temperature field with respect to the plane $Z=0$.

Figure 1c illustrates the dependence of temperature T on coordinate Z for various values of the Biot number. It is evident that with an increase in heat emission the temperature diminishes.

NOTATION

$T(x, y, z)$, temperature field; $\lambda(x, y, z)$, thermal conductivity coefficient of nonhomogeneous body; λ_{1}, λ_{0}, thermal conductivity coefficients of basic material and of the inclusion; α_{Z}, coefficient of heat transfer from the surface $z=-\ell-d ; S(\zeta)$; symmetric unit function; $\Delta=\partial^{2} / \partial x^{2}+\partial^{2} / \partial y^{2}+\partial^{2} / \partial z^{2}$, Laplace operator; $\delta(\zeta)$, Dirac delta function; Bi $=$ $\left(\alpha_{2} \ell\right) / \lambda_{I}$, Biot number.

LITERATURE CITED

1. Ya. S. Podstrygach, V. A. Lomakin, and Yu. M. Kolyano, Thermoelasticity of Bodies of Nonhomogeneous Structure [in Russian], Moscow (1984).
2. G. Korn and T. Korn, Mathematical Handbook for Scientists and Engineers, McGraw-Hill, New York (1967).
3. A. M. Kosevich, Physical Mechanics of Real Crystals [in Russian], Kiev (1981).
4. A. P. Prudnikov, Yu. A. Brychkov, and O. I. Marichev, Integrals and Series. Elementary Functions [in Russian], Moscow (1981).
5. A. P. Prudnikov, Yu. A. Brychkov, and O. I. Marichev, Integrals and Series. Special Functions [in Russian], Moscow (1983).

[^0]: Institute of Applied Problems of Mechanics and Mathematics, Academy of Sciences o the UkrSSR, L'vov. Scientific and Engineering Institute of Materials, L'vov. Translated : rom Inzhenerno-Fizicheskii Zhurnal, Vol. 57, No. 5, pp. 849-853, November, 1989. Original article submitted May 24, 1988.

